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Abstract: Low-cost, long-term measures of air pollution concentrations are often needed for epidemi-
ological studies and policy analyses of household air pollution. The Washington passive sampler
(WPS), an ultra-low-cost method for measuring the long-term average levels of light-absorbing carbon
(LAC) air pollution, uses digital images to measure the changes in the reflectance of a passively
exposed paper filter. A prior publication on WPS reported high precision and reproducibility. Here,
we deployed three methods to each of 10 households in Ulaanbaatar, Mongolia: one PurpleAir for
PM2.5; two ultrasonic personal aerosol samplers (UPAS) with quartz filters for the thermal-optical
analysis of elemental carbon (EC); and two WPS for LAC. We compared multiple rounds of 4-week-
average measurements. The analyses calibrating the LAC to the elemental carbon measurement
suggest that 1 µg of EC/m3 corresponds to 62 PI/month (R2 = 0.83). The EC-LAC calibration curve
indicates an accuracy (root-mean-square error) of 3.1 µg of EC/m3, or ~21% of the average elemental
carbon concentration. The RMSE values observed here for the WPS are comparable to the reported
accuracy levels for other methods, including reference methods. Based on the precision and accuracy
results shown here, as well as the increased simplicity of deployment, the WPS may merit further
consideration for studying air quality in homes that use solid fuels.

Keywords: low-cost sensor; light-absorbing carbon; household air pollution; indoor air pollution;
passive sampler; elemental carbon

1. Introduction

Household air pollution is a major risk factor for death and disease, annually re-
sponsible for 3.5 million premature deaths and 92 million disability-adjusted life years
(DALYs) [1–5]. Most premature deaths occur in low-income countries, where households
have relatively higher exposure to air pollution (e.g., PM2.5, black and brown carbon) owing
to household combustion of solid fuels for cooking and heating [6–9].

Two major challenges associated with studying indoor air pollution are cost and
logistics [10–12]. Air pollution samplers can cost from a few hundreds to several thousands
of US dollars depending on factors such as their accuracy, efficiency, robustness, and user
friendliness [13–15]. Deployments of such samplers typically require detailed logistic
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planning associated with deploying and collecting equipment, such as charging equipment
between deployments; coordinating visits with residents; ensuring safe and secure locations;
and having access to laboratory facilities.

Passive samplers can lower costs and simplify logistics associated with in situ air quality
measurements; the Washington passive sampler (WPS) aims to do so for measuring the
long-term average levels of light-absorbing carbon (LAC) air pollution [16]. “LAC” refers to
the carbon components of fine particulate matter (PM2.5), such as black and brown carbon,
which strongly absorb visible light (wavelengths: 400–700 nanometers) [17]. The WPS is
comparatively ultra-low-cost (~USD 5-15) and logistically straightforward to use (no electricity,
expensive lab equipment, or extensive maintenance required). The WPS uses digital images
to measure the change in the reflectance of a passively exposed paper filter.

Here, we build on a previous study that tested the reproducibility and precision of the
WPS in 20 households in Hyderabad, India [16]. The present study aimed to determine the
accuracy and uncertainty of the WPS by co-locating it with (A) quartz filters for elemental
carbon (EC) analysis using an ultrasonic personal aerosol sampler (UPAS, Access Sensors
Technologies, Fort Collins, CO, USA), and (B) the PurpleAir sensor (PurpleAir, Draper,
UT, USA) [18,19]. This investigation is the first to compare results between the WPS and
other methods, including comparison against a thermal-optical analysis, which is the
gold-standard measurement method for elemental carbon.

2. Materials and Methods

In this section, we outline the methodology employed to intercompare three dis-
tinct measurement methods: the Washington passive sampler (WPS), a reference method
utilizing elemental carbon thermal-optical analysis, and the PurpleAir sensor.

2.1. The Washington Passive Sampler (WPS)

As stated above, the WPS is an ultra-low-cost passive sampler for light-absorbing carbon.
As deployed in the field, it consists of a downward-facing cellulose filter (Whatman 1002110
qualitative circle cellulose filter paper, GE Healthcare, Chicago, IL, USA), a filter holder, and a
protective case for deployment (Figure S1) [17]. Before and after deployment, the cellulose
filter was photographed in a lightbox using a Basler acA3800-14 um monochrome camera
(Basler acA3800-14um, Basler AG, Ahrensburg, Germany). Each photo in the lightbox was
taken of two filters: the sample and a field blank. The lightbox was lit by light-emitting
diode (LED) strips located on the lid, ensuring uniform lighting conditions; trays for the
sample and the blank were in a fixed position, immediately below the LEDs. The lightbox
was sealed to eliminate any outside light. As described below (Section 3.2), the blank
filters were used to correct for potential variance in the light intensity between the pre- and
post-deployment photos.

Image analysis was conducted using MATLAB’s imread function (MATLAB and Statis-
tics Toolbox Release 2023A, MathWorks, Inc., Natick, MA, USA) to measure the pixel
intensity (PI), which serves as a metric for image “blackness”. A PI value of 65,535 rep-
resents the whitest or lightest point, while a PI of 0 corresponds to the darkest point in
the image. The difference in the PI (∆PI) between the post-exposure and pre-exposure
images serves as a quantification of the reflectance change, attributed to the deposition
of light-absorbing carbon on the filter during deployment. For ease of interpretation, we
consider the change in PI to be positive when the filter darkens. Consequently, all ∆PI
values presented in this study utilized the MATLAB result multiplied by negative one.

The average cost of each WPS measurement is approximately USD 5–15, dependent
on the deployment details. The WPS itself does not require electricity or lab equipment
and is relatively easy to assemble, deploy, and maintain. For further information about the
design and application of WPS and the light box, please see Clark et al. [17].

Each cellulose filter within the WPS was subjected to photography both before and
after each deployment period to assess the change in pixel intensity (∆PI), denoting “black-
ness”, during that specific period. Subsequently, following each deployment period, the
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WPS devices were redeployed in households to accumulate further darkening, alongside
freshly exposed WPS units. To investigate the impact of filter loading, we progressively
increased the number of WPS devices in each sampling period. The total number of WPS
devices within each household during each period is detailed as follows: two WPS units in
period 1, four WPS units (comprising the original two and two newly deployed units) in
period 2, six WPS units (including two from period 1, two from period 2, and two newly
deployed units) in period 3, and eight WPS units in period 4 (refer to Table S1). Additionally,
for quality assurance, a total of 10 field blanks were photographed and stored within a vacuum
environment during each deployment. These field blanks were matched with sample sets
from individual households to correct for potential issues, such as fluctuations in camera
performance or lighting conditions. For example, if both the sample and the blank exhibited
darkening, we employed the change in the pixel intensity of the blank to correct the sample’s
change in pixel intensity (see Section 3.2 for results related to field blanks).

2.2. Reference Method

To determine the accuracy of the WPS, we compared the changes in the reflectance
of the WPS against a “gold-standard” reference method, in this case, elemental carbon
(EC) and organic carbon (OC) aerosol analysis. The EC/OC aerosol analysis method is a
thermal-optical analysis, which leverages differences in the thermal refractivity of elemental
and organic carbon to separate and quantify these components on a quartz-fiber filter [20].
There are several EC/OC analysis protocols, each with a different temperature plateau,
residence time, carrier gas, and/or optical charring correction. The uncertainty of each
protocol may reflect the composition of the aerosol samples, the filter loading effect, and
the occurrence of inorganic compounds that may enhance charring and lead to erroneous
determinations [20–22]. For details about the NIOSH5040 protocol employed here, see
Karanasiou et al., 2020 [21]. We used the elemental carbon concentration as a proxy for
light-absorbing carbon, as has been carried out and suggested in several studies [22–27].

To obtain samples for elemental carbon analysis, we utilized the UPAS [18]. The UPAS
is a time-integrated active sampler that can record the mass flow (MZBD001, 0.5–3.0 L/min,
accurate within 5%), temperature, pressure, relative humidity, light intensity, and acceleration.
To avoid the possible saturation of the filters in active samplers, such as the UPAS, we
used quartz filters and a 5% duty cycle for the UPAS, meaning that the UPAS ran 5 s every
100 s. After each deployment, the UPAS samples were collected and subsequently sent to
the Center for Energy Development and Health (CEDH) at Colorado State University (CSU)
in Fort Collins, CO, for thermal-optical analysis. This analysis enabled us to determine
the mass of elemental carbon collected on the filter. By combining this elemental carbon
mass with the mass flow data recorded by the UPAS, we calculated the average elemental
carbon concentration for each household during each deployment period. We compared
this elemental carbon concentration against the WPS-measured average pixel intensity
change recorded during the corresponding deployment period, allowing us to establish the
calibration curve.

2.3. PurpleAir

To compare the light-absorbing carbon and elemental carbon concentrations with
PM2.5 concentrations, we employed PurpleAir sensors, which continuously measure the
PM concentration, temperature, and relative humidity. These sensors are equipped to
transmit real-time data to the cloud when connected to Wi-Fi, a feature that we utilized to
monitor any disruptions during deployment, such as electricity outages, and to visit the
households after such disruptions.

The PM2.5 concentrations reported by PurpleAir sensors demonstrate a strong correla-
tion with reference methods, like the EPA federal reference methods and federal-equivalent
methods (R2 > 0.9). However, PurpleAir readings can occasionally overestimate or un-
derestimate concentrations by as much as a factor of 2, primarily due to environmental
variables, such as high relative humidity [28–32]. In our study, PurpleAir sensors were
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deployed without prior calibration, a common practice even though it may compromise
the precision of PurpleAir measurements. Consequently, we utilized PurpleAir data for
comparative purposes but excluded them from some analyses, including the establishment
of the calibration curve.

2.4. Study Design

The study was conducted in 10 households in Ulaanbaatar, Mongolia, from December
2020 to April 2021 (~4 months). The households had a similar size and geometry, and each
used government-subsidized charcoal as the main fuel source for cooking and heating.
In each household, we utilized three devices (WPS, UPAS, PurpleAir; see Table 1). As
described in Table S1, the ~4 months consisted of a total of 4 deployments (i.e., sampling
periods) of 21–35 days each.

Table 1. Deployment details.

Device Design Sampling Type Filter/Sensor Type Measuring Species Comments
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2.5. Data Analysis

Given the study’s design, the potential maximum number of elemental carbon mea-
surements would have been 40 duplicates (10 households over 4 deployment periods).
However, this maximum data point count was not achieved due to various maintenance
issues, such as UPAS shutdowns due to high temperatures, battery depletion during elec-
tricity outages, and other unexplained factors. To ensure data quality, we enforced a
requirement that all UPAS measurements ran for a minimum of 24 h per deployment (i.e.,
the maximum sampling duration for UPAS at a 5% duty cycle was 25–42 h). As a result,
the final count of elemental carbon measurements amounted to N = 21, with 10 duplicates
and the rest representing single measurements, owing to the deployment issues mentioned
above.

Our data analysis encompasses four main components:

1. Precision and reproducibility of WPS and UPAS: We utilized the intraclass correlation
coefficient (ICC) to determine the same-method agreement between paired duplicate
WPS samples and (separately) paired duplicate UPAS samples. We also compared the
precision of both methods [33]. The ICC measures how strongly the duplicate samples
resemble each other; ICC = 1 means that the duplicate samples perfectly match, and
therefore, the precision of the sampler is perfect/infinite. The ICC is more appropriate
than R2 for understanding the consistency of duplicate measurements because the
paired duplicate measurements are mathematically equivalent. (In contrast, R2 is
used when the pairs have differentiation: one measurement is necessarily “x”, and
the other is necessarily “y”.)

2. Comparing the WPS against the gold standard: In this step, we assessed the perfor-
mance of the WPS against the gold-standard method and established a calibration
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curve for the light-absorbing carbon relative to the elemental carbon. Deming regres-
sion (deming package in R (R version 4.1.2, R Foundation for Statistical Computing,
Vienna, Austria) was used to derive the calibration curve because of the uncertainties
in both the elemental carbon and the light-absorbing carbon measurements. The
accuracy of the WPS was then computed as the root-mean-square error (RMSE) be-
tween the observed change in reflectance (utilizing the gold-standard method) and
the predicted change in reflectance (using the WPS with the empirically determined
calibration curve).

3. Correlations across methods: This component involved examining the correlations among
all three measurement methods for each household during each deployment period.

4. Comparing WPS measurements across deployments: This component aimed to in-
vestigate potential filter-loading effects by comparing the WPS measurements across
different deployment periods (i.e., across duplicate samples made using different ages
of the filter and filter paper).

3. Results
3.1. Measurement Completeness

The measurement completeness, which represents the percentage of successfully
executed samples out of the intended samples, was notably higher for the Washington
passive sampler (WPS), with a rate of 80% (32 out of 40 intended samples) compared to
55% for the ultrasonic personal aerosol sampler (UPAS) (21 out of 40 intended samples).
When focusing on duplicate-sample completeness, i.e., the percentage of intended paired
duplicates that were successfully obtained, the WPS achieved a rate of 70% (28 out of
40 intended samples), while the UPAS showed a lower rate of 25% (10 out of 40 intended
samples). These results underline the reliability and lower failure rate of the WPS in
comparison to the UPAS, particularly during longer measurement periods.

3.2. Precision of WPS and UPAS

Figure 1 reports duplicate samples collected by the WPS, and (separately) the UPAS.
Both methods demonstrated relatively good self-agreement. As measured by the intraclass
correlation coefficient (ICC), the precision was higher for the UPAS (ICC = 0.96) than the
WPS (ICC = 0.88).

3.3. Field Blank and Calibration Curve

The mean change in the reflectance change for the 10 field blanks was 77 (standard
deviation of 20) PI per month. Before establishing the calibration curve, we adjusted the
change in the reflectance for the exposed filters by subtracting the mean change in the
field blanks. The Deming regression analyses to calibrate the light-absorbing carbon to
the elemental carbon measurement indicate that, on average, 1 µg of elemental carbon
(EC) per cubic meter corresponds to 62 PI per month (as shown in Figure 2). Applying
that conversion to all WPS measurements to predict the elemental carbon concentrations
from the passive light-absorbing carbon measurements, for a one-month measurement, the
root-mean-square error is 3.1 µg/m3 EC. That value corresponds to ~21% of the average
elemental carbon concentration.

In summary, the average concentrations were 180 µg/m3 for PM2.5 (PurpleAir, uncali-
brated) and 14.1 µg/m3 for elemental carbon (measured by the UPAS) from the 21 samples
collected across various households during each deployment period. The light-absorbing
carbon measurements, expressed in their original, uncorrected units, reflect the rate of
change in the filter color, denoted in units of change in pixel intensity per month, which
depends on the deposition of the light-absorbing carbon over time. The average value
for the change in pixel intensity (∆PI) was 1052 PI per month for all 32 samples collected,
and 952 for the samples collected from the same subset of households where elemental
carbon samples were successfully obtained. Using the calibration value (1 µg of EC per m3

corresponds to 62 PI per month), 1052 PI per month would correspond to an average of
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17.0 µg/m3. Alternatively, when using the calibration curve shown in Figure 2 (y = 62.1x +
75.1), 1052 PI per month would correspond to 15.7 µg/m3. Those two values suggest that if
the number of successful samples for elemental carbon analysis were 32 instead of 21, the
average concentration would have been greater than 14.1 µg/m3.
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Figure 1. Correlation between duplicate samples: (a) Washington passive samplers (WPS), which
measure the passive deposition of light-absorbing carbon (LAC), and (b) filter samples collected
via an ultrasonic personal aerosol sampler (UPAS) and thermo-optically analyzed for elemental
carbon (EC). ICC is the intraclass correlation coefficient, a measure of how strongly the duplicate
measurements resemble each other. The elemental carbon collected by the UPAS measurement is
considered here the “gold standard”; the light-absorbing carbon collected by the WPS measurement is
the new method investigated here. The plots show that the duplicate WPS and UPAS each exhibited
strong within-method agreement (ICC > 0.88), but precision was higher for the UPAS than the WPS.
There are more measurements shown for the WPS than for the UPAS (n = 28 vs. n = 10), reflecting
that the WPS is simpler and less failure-prone than the UPAS; the percentages of intended duplicate
samples that were successfully obtained were 70% for the WPS and 25% for the UPAS.
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Figure 2. Correlation between the “gold standard” (x-axis: EC) and the WPS (y-axis: LAC), displayed
using the native units of (a) the elemental carbon measurements and (b) the light-absorbing carbon
measurements. (The two plots represent the same data, displayed in different units; the plots are
similar but not identical because the deployment duration differed by the sampling period.) The
y-error bars represent the range of the duplicate WPS, and the x-error bars represent the uncertainties
from the elemental carbon analysis. Deming regression was utilized (R, Deming package), reflecting
that both measurements have uncertainties.
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3.4. PurpleAir

In our comparison of the PM2.5 concentration in households with both light-absorbing
carbon and elemental carbon, the results, as depicted in Figure 3, indicate that both light-
absorbing carbon and elemental carbon exhibited strong correlations with PM2.5. Specifi-
cally, the UPAS (measuring elemental carbon) demonstrated a slightly stronger correlation
with PM2.5, with an R2 value of 0.88, in comparison to the WPS (measuring light-absorbing
carbon), with an R2 value of 0.77. This observation likely reflects the diverse sources and
chemical composition of PM2.5, as well as, and perhaps more significantly, the slightly
lower precision of the WPS compared to the UPAS in this context.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 12 
 

 

  

Figure 2. Correlation between the “gold standard” (x-axis: EC) and the WPS (y-axis: LAC), displayed 
using the native units of (a) the elemental carbon measurements and (b) the light-absorbing carbon 
measurements. (The two plots represent the same data, displayed in different units; the plots are 
similar but not identical because the deployment duration differed by the sampling period.) The y-
error bars represent the range of the duplicate WPS, and the x-error bars represent the uncertainties 
from the elemental carbon analysis. Deming regression was utilized (R, Deming package), reflecting 
that both measurements have uncertainties. 

3.4. PurpleAir 
In our comparison of the PM2.5 concentration in households with both light-absorbing 

carbon and elemental carbon, the results, as depicted in Figure 3, indicate that both light-
absorbing carbon and elemental carbon exhibited strong correlations with PM2.5. Specifi-
cally, the UPAS (measuring elemental carbon) demonstrated a slightly stronger correla-
tion with PM2.5, with an R2 value of 0.88, in comparison to the WPS (measuring light-ab-
sorbing carbon), with an R2 value of 0.77. This observation likely reflects the diverse 
sources and chemical composition of PM2.5, as well as, and perhaps more significantly, the 
slightly lower precision of the WPS compared to the UPAS in this context. 

  

Figure 3. Correlation between PurpleAir (uncalibrated) with WPS (a) and elemental carbon analysis 
(b). The x-value error bars represent the difference between the duplicate WPS results (a) and the 
elemental carbon analysis uncertainties reported by the lab (b). 

3.5. Darkening Rate of Fresh and Aged Filters 
Here, we compare the darkening rates of aged (exposed for more than 4 weeks) and 

fresh (exposed for 4 weeks) filters (Figure 4). The darkening rates were similar but not 
identical (ICC = 0.90); the 95% CI on the best-fit line (the shaded blue region in Figure 4) 

Figure 3. Correlation between PurpleAir (uncalibrated) with WPS (a) and elemental carbon analysis
(b). The x-value error bars represent the difference between the duplicate WPS results (a) and the
elemental carbon analysis uncertainties reported by the lab (b).

3.5. Darkening Rate of Fresh and Aged Filters

Here, we compare the darkening rates of aged (exposed for more than 4 weeks) and
fresh (exposed for 4 weeks) filters (Figure 4). The darkening rates were similar but not
identical (ICC = 0.90); the 95% CI on the best-fit line (the shaded blue region in Figure 4)
includes the 1:1 line. There is moderate evidence of a modest difference in the filter
darkening rate for the aged and fresh filters (slope = 1.06 ± 0.05). This “filter loading”
effect is well-documented for micro-aethalometers (Good et al., 2017) [34] which use similar
principles to the WPS.
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Figure 4. Darkening rate difference between fresh and aged filters. Fresh filters were photographed
before deployment and ~4 weeks after exposure in the household; aged filters were photographed
after being exposed for a certain period, then photographed after ~4 more weeks of exposure, i.e., aged
filters represent the delta pixel intensity of already exposed filters after more exposure. The results
here are similar to the “filter loading” effect, which is well-documented for micro-aethalometers.
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4. Discussion

The objective of this study was to assess the performance and uncertainty of the
Washington passive sampler (WPS), an innovative, cost-effective passive sampler designed
for measuring light-absorbing carbon. The precision and accuracy of the WPS were de-
termined through the deployment of multiple duplicate samples and co-location with a
PM2.5 proxy method (PurpleAir), as well as duplicates of the “gold-standard” reference
method (UPAS with elemental carbon analysis). Notably, unlike the active PurpleAir and
the gold-standard UPAS method, the WPS is a passive sampler. The study’s findings
indicate that changes in the reflectance measured by the WPS can effectively predict the
long-term average elemental carbon concentration with a relatively good level of accuracy,
as indicated by a root-mean-square error (RMSE) of 21%.

The reported accuracy of the Washington passive sampler (WPS) with an RMSE of
21% is consistent with the accuracy levels reported for other methods used to measure
black carbon or elemental carbon [35–43]. For instance, low-cost black carbon samplers
available on the market exhibited similar accuracy, such as an RMSE of 25% reported for
ABCD, and approximately 10% for another image-based reflectance method [12,36].

Chiappini et al. [22] conducted a study involving three sets of duplicated co-located
samples, each analyzed using three different protocols for elemental carbon (EC) analysis.
They reported overall uncertainties of 14%, 39%, and 20% for the respective sets (averaging
24%) for samples #1, #2, and #3, indicating that elemental carbon analysis can have vari-
able uncertainties across different protocols. Several inter-laboratory comparison studies
have also reported relative standard deviations of 6–26% for elemental carbon analysis
across various widely used thermal-optical analysis protocols in different laboratories (see
Table S2) [21,22,37–43]. It is important to note that the RMSE, a measure of accuracy, is
the combination of the standard deviation (a measure of precision) and absolute bias [44].
Therefore, the RMSE, as reported here for the WPS, is expected to be higher than the stan-
dard deviation. The accuracy of the WPS aligns with the levels reported in the literature for
other methods, including the gold-standard reference methods, underscoring its reliability
and effectiveness for measuring light-absorbing carbon.

The correlation between the PM2.5 and light-absorbing carbon, indicated by an R2

value of 0.77, was slightly lower than the correlation between the PM2.5 and elemental
carbon, which had an R2 value of 0.88. This implies that the relationship between the
PM2.5 and elemental carbon is slightly stronger. Additionally, the darkening rates of the
aged and fresh filters exhibited good correlations, as reflected by an intraclass correlation
coefficient (ICC) of 0.90. The 95% confidence interval (CI) region of the best-fit line includes
the 1:1 line, and the slope of the line for the aged versus fresh filters was 1.06 (±0.05). The
minor difference observed, with the darkening rates being slightly lower for the aged filters
(i.e., darker) compared to the fresh filters (i.e., less dark), aligns with the well-documented
filter-loading effect observed for micro-aethalometers [34].

A recent study by Jeronimo et al. [36] also developed a low-cost method for estimating
the concentration of black carbon using a digital camera. They compared the image-
based reflectance method to several existing reference methods, including thermal-optical
analysis, and found a good correlation with a normalized RMSE of less than 10% for all
comparisons. Both studies (ours; Jeronimo et al. [36]) developed a digital image-based
method and compared it against a gold-standard method; the main differences include
the sampling method (Jeronimo et al. [36] employed active sampling instead of passive
samplers), filter type (Jeronimo et al. [36] used more expensive PTFE filters, whereas
our method utilized cellulose filters), and sampling time (in Jeronimo et al.’s study, the
sampling duration ranged from 24–48 h, whereas our study extended over 21–35 days).
Nevertheless, the results of Jeronimo et al.’s study offer consistent and reassuring evidence
that an image-based reflectance method can deliver accurate estimates.

Relative to the gold-standard method (thermal-optical analysis of active filters), the
WPS offers important advantages in scalability, ease of use, utility, lower measurement
failure rate, and cost. Most studies of indoor air pollution effects on human health are based
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on exposure data collected for 24–48 h, owing to the high cost of measurement devices and
the logistics of measurements [28,43]. Thus, the results of these studies rely on short-term
average concentrations of black carbon, which can be different with changing environments
and household behavior. In some cases, studies with filters employ multiple visits (e.g.,
three samples of 24 h each, for an 18-month period), thus providing a small number of
snapshots. In contrast, the WPS can be deployed for months or potentially years without
requiring extensive maintenance, and it allows for the collection of long-term levels of LAC
concentrations. For many investigations, the lower cost of measurement and the greater ease
of use of the WPS relative to the gold-standard measurements, combined with the opportunity
of using the WPS to obtain long-term rather than short-term averages, may offer important
advantages for exposure and health studies in households that use solid fuels.

Recent studies comparing low-cost methods on the market to reference methods all
suggest that the readings of low-cost sensors are sensitive to environmental factors, such
as the relative humidity, and performances against reference monitors change with the
weather [42,43,45,46]. Light-absorbing carbon estimates using image-based methods for
reflectance may be sensitive to the site, season, pollution source (e.g., fuel type), and/or
reference method selected for calibration. Further testing needs to be carried out to deter-
mine the (i) correction factor under different environmental conditions, (ii) the calibration
curve of light-absorbing carbon against PM2.5, and (iii) the upper and lower thresholds of
the detection limit in terms of concentration and time.

5. Conclusions

This study evaluated the Washington passive sampler (WPS) as a novel, ultra-low-
cost sensor for assessing the levels of light-absorbing carbon. A prior field campaign [16]
investigated the precision of this method; the present campaign aimed to investigate its
accuracy. To do so, we compared duplicate samples of the WPS against co-located duplicate
samples using a gold-standard method, thermal-optical analysis.

Our results indicate that the root-mean-square error (RMSE) of the WPS was 21%,
which is comparable to the literature-reported values for other methods, including gold-
standard methods. This level of accuracy is surprisingly high, given the ultra-low cost
and the ease of use of this method. The two main differences between the WPS and the
gold-standard measurements are the measurement type (image analysis versus chemical
analysis) and passive versus active samples (i.e., without versus with a pump).

The strong correlation with elemental carbon (R2 = 0.88) and PM2.5 (R2 = 0.77), along
with the consistency observed in the darkening rates of aged and fresh filters (i.e., no strong
filter-loading effect), further corroborates the WPS’s reliability. The WPS offers advantages
in terms of its scalability, ease of use, cost-effectiveness, and a prolonged deployment
approach, which enables collecting data on long-term levels of light-absorbing carbon
pollution. In our study, the percentage of successful samples collected over the intended
sample number was notably higher for the WPS (80%) compared to the UPAS (55%) in total.
When considering duplicate samples, the difference remained substantial, with the WPS
achieving a success rate of 70% versus the UPAS’s 25%. While these challenges encountered
during data collection may be unique to our study, issues such as unintentional shutdowns,
due to factors like high temperatures, battery depletion from extended power outages, and
unexplained operational disruptions, could be encountered universally in field conditions,
especially in regions like rural India. Based on our findings, the WPS appears to be a
well-suited choice for long-term studies in rural locations, offering a reliable, practical, and
inexpensive solution for measuring light-absorbing carbon pollution.

This paper represents only the second publication regarding the WPS [16]; additional
testing of its robustness and methods for deployment would be helpful. For example,
further research on the sensitivity of the WPS to environmental factors, the detection limit,
and the calibration curve against elemental carbon and PM2.5 would usefully shed light on
the WPS’s reliability across diverse environmental contexts.
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optical methods for the determination of EC concentrations.
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